Lead Heavy Machinery Operations for Use at Vegetation Fires Handouts

Table of Contents

Exercise 1: RFMH Section 6 3
Exercise 1: RFMH Section 6 Model Answer 4
Exercise 2: RFMH Section 6 5
Exercise 2: RFMH Section 6 Model Answer 6
Exercise 3: Fire Behaviour - ROS7
Rate of Spread Calculation Sheet 8
Exercise 3: Model Answer, ROS 9
Exercise 4: Productivity 10
Exercise 4: Productivity Model Answer 11
Tactical Planning Exercise - answer guidelines 12

Unit Standard 3292

Name: \qquad

Exercise 1: RFMH Section 6

Situation 1 A fire is burning in 80% cured natural standing grazed pasture 0.25 m high on a 10 degree up-slope. ISI value is 5 .

Determine the following expressed in the appropriate units of measure:

Tools Use your RFMH (Green Book) 6.4, 6.6, 6.7, 6.9 and 6.11.

Determine Adjusted Rate of Spread (AROS) - uses flat terrain ROS and SCF

Multiply flat terrain ROS by SCF to determine adjusted rate of spread (AROS)
\qquad Exercise 1: RFMH Section 6 Model Answer

Situation 1 A fire is burning in 80% cured natural standing grazed pasture 0.25 m high on a 10 degree up-slope. ISI value is 5 .

Determine the following expressed in the appropriate units of measure:
RFMH

| 6.4 | AFL (Available fuel load) | $=2.0 \mathrm{t} / \mathrm{ha}$ |
| ---: | :--- | ---: | :--- |
| 6.6 | FTROS (Flat terrain Rate of Spread) | $=402 \mathrm{~m} / \mathrm{h}$ |
| 6.7 | SCF (Slope Correction Factor) | $=1.6$ |
| | AROS (Adjusted Rate of Spread) | $=643 \mathrm{~m} / \mathrm{h}$ |
| 6.9 | HFI (Head Fire Intensity) | $=643 \mathrm{~kW} / \mathrm{m}$ |
| 6.11 | FL (Flame Length) | $=\sim 1.5 \mathrm{~m}-1.5 \mathrm{~m}$ |

RN page 24 Determine Adjusted Rate of Spread (AROS) - uses flat terrain ROS and SCF

RN page 25	Multiply flat terrain ROS by SCF to determine adjusted rate of spread (AROS)		
	Determining Headfire Intensity (HFI) - Rate of Spread/Fuel Load Relationship		
6.9	- Tables use ROS in left hand column and AFL across the top to show Fire Intensity (I) expressed in kilowatts per metre (kW / m) - Consists of 3 tables - table number in bottom left hand corner of each table		
	Table 1	1	Table 3
	1-60 m/h ROS	(1000 m/h ROS	1200-5000 m/h ROS
e.g.	AROS $=400 \mathrm{~m} / \mathrm{h}$ AFL $=10 \mathrm{t} / \mathrm{ha}$ HFI $=2000 \mathrm{~kW} / \mathrm{m}$		
6.10	Determining Headfire Intensity (HFI) - Flame Length Relationship		
	- Uses flame length expressed in metres to determine Actual and Approximate fire intensity		
e.g.	FL $=2.0 \mathrm{~m}$		
	HFI $=\sim 1200 \mathrm{~kW} / \mathrm{m}$		
Conversely...	HFI $=5$	$5936 \mathrm{~kW} / \mathrm{m}$	
	$\mathrm{FL} \quad=\quad \sim 4.0 \mathrm{~m}-4.5 \mathrm{~m}$		

Name: \qquad

Exercise 2: RFMH Section 6

Situation 2 A fire is burning in 80\% cured natural standing grazed pasture 0.30 m high on a 15 degree up-slope. ISI value is 5 .

Determine the following expressed in the appropriate units of measure:
AFL (Available fuel load) \qquad
FTROS (Flat terrain Rate of Spread) \qquad
SCF (Slope Correction Factor) \qquad
AROS (Adjusted Rate of Spread)
$=$ \qquad
HFI (Head Fire Intensity)
$=$ \qquad
FL (Flame Length)
$=$ \qquad

Name:... Organisation: \qquad

Exercise 2: RFMH Section 6 Model Answer

Situation 2 A fire is burning in 80\% cured natural standing grazed pasture 0.3 m high on a 15 degree up-slope. ISI value is 5 .
Determine the following expressed in the appropriate units of measure:

AFL (Available fuel load)	$=2.2 \mathrm{t} / \mathrm{ha}$
FTROS (Flat terrain Rate of Spread)	$=402 \mathrm{~m} / \mathrm{h}$
SCF (Slope Correction Factor)	$=2$
AROS (Adjusted Rate of Spread)	$=804 \mathrm{~m} / \mathrm{h}$
HFI (Head Fire Intensity)	$=884 \mathrm{~kW} / \mathrm{m}$
FL (Flame Length)	$=\sim 1.5 \mathrm{~m}-2.0 \mathrm{~m}$

Name: \qquad

Exercise 3: Fire Behaviour - ROS

Time of day	Mid-week 1330	Time of Year	Mid January
ISI	$=6$	BUI	$=48$

Degree of Grass Curing = 80\%
Situation 1. A fire is reported in long rank grass on the Eastern side of a rural road, which at this point runs directly North-South. The fire is spreading into the adjacent farmland flats.
2. 400 m east of the road over the farm boundary fence is scrubland consisting of Manuka about 1.5 m high on a 6° up-slope running some 300 m to the ridgeline. On the eastern side of this ridge there is dense Manuka scrub about 1.5 m high on a 10° down-slope.
3. The vegetation on the farmland flats is predominantly un-grazed grass and weeds of around $0.4 m$ in height.
4. The wind direction is 200 degrees.
5. The boundary fence between the farm and the scrub is entwined with large bushy Manuka scrub of around $2 m$ in height.

Determine the following (write your answers on the table provided)

Your tasks For grass area:

1. Headfire rate of spread
2. Headfire intensity
3. The time required for the fire to reach the farm / scrub boundary.

For scrub area over the fence:
4. Headfire rate of spread
5. Headfire intensity for the scrub area.
6. The time required for the fire to reach the ridgeline from the fence.

For scrub area over the ridge:
7. What fire intensity would you expect to occur after the fire crossed over the ridgeline?
8. How would this affect your tactics on this section of the fire?

Tip

> These are field calculations!
> Make it easier for yourself by rounding figures. You're looking for ball park estimations.

Name:

\qquad Organisation: \qquad

Rate of Spread Calculation Sheet

\qquad
ISI =
BUI $=$ \qquad Degree of Grass Curing = \qquad \%

Rates of spread, headfire intensity, rates of perimeter growth, and elapsed time.

References

Fuel Load Grass	RFM Handbook Sec 6.4	Fuel Load Manuka Scrub	RFM Handbook Sec 6.5
Headfire ROS, flat	RFM Handbook Sec 6.6	Slope Correction Factor	RFM Handbook Sec 6.7
Headfire Intensities	RFM Handbook Sec 6.9	Headfire Intensity / Flame Length	RFM Handbook Sec 6.10

(Time calculation $=60 \div$ AROS \times distance.)

Name: \qquad
\qquad

Exercise 3: Model Answer, ROS

ISI = \qquad BUI $=$ \qquad
\qquad Degree of Grass Curing = \qquad 80__\% $\%$

Rates of spread, headfire intensity, rates of perimeter growth, and elapsed time.

(Time calculation $=60 \div$ AROS \times distance .)

Name: \qquad

Exercise 4: Productivity

Productivity You are managing a sector at a fire. You need to construct a control line from an anchor point on a rural road using a D6 bulldozer assigned to you.

Fuel and topography information

The control line will traverse some 400 m of scattered Manuka scrub and grass on flat ground and then through 300m of dense Manuka scrub about 1.0 m high on a 6° slope running up to a ridgeline.

Your Task
Calculate the time required to establish a blade-width line up to the ridge top.

For Machine productivity rates, see Referral Notes, pages 40-42

Name: \qquad

Exercise 4: Productivity Model Answer

Given

- 400 metres of light grass and scrub on flat ground
- 300 metres of dense Manuka scrub about 1.0 metre high on a 6^{0} or 10% upslope
- D6 Bulldozer

D6D rating = 104 kW

Fuel Resistance Class:

400 metres - Low
300 metres - Moderate

Productivity

$4-6 \mathrm{~m} / \mathrm{kW} / \mathrm{h}$ - say $5 \mathrm{~kW} / \mathrm{h}$
$2 \mathrm{mkW} / \mathrm{h}$

Low resistance $\quad 5 \mathrm{~m} / \mathrm{kW} / \mathrm{h}=520 \mathrm{~m} / \mathrm{h}=46 \mathrm{mins}$
Moderate resistance $2 \mathrm{~m} / \mathrm{kW} / \mathrm{h}=208 \mathrm{~m} / \mathrm{h} \times 80 \%=166 \mathrm{~m} / \mathrm{h}=108 \mathrm{mins}$
Total time $=154 \mathbf{m i n s}=$ around 2.5 hrs
If the total line is in the Low Resistance Class.
Fuel Resistance Class: Productivity
Low resistance $\quad 5 \mathrm{~m} / \mathrm{kW} / \mathrm{h}=520 \mathrm{~m} / \mathrm{h}=46 \mathrm{mins}$
Low resistance $\quad 5 \mathrm{~m} / \mathrm{kW} / \mathrm{h}=520 \mathrm{~m} / \mathrm{h} @ 80 \%=416 \mathrm{~m} / \mathrm{h}=43 \mathrm{mins}$
Total time $=89 \mathrm{mins}=$ around 1.5 hrs

Name: \qquad

Tactical Planning Exercise - answer guidelines

How did you go with your Tactical Planning exercise?

- Deploy bulldozer to construct a control line along the fence

In the event that the fire gets into the scrub, deploy a helicopter to provide flame knockdown ahead of the bulldozer and consolidate and patrol the line with hand crews.

- Request that the second helicopter be deployed to assist with the flame knockdown and foam application ahead of the bulldozer
- Request that a 4×4 engine be made available for follow up behind the dozer

Fire Assessment (perimeter growth and location)

Resources Assigned (Production Capability)
[will objective be met?]

Planned Deployment

Contain the fire within the ridgeline using Direct Attack
$2.5 \times($ ROS $) 532=1330 \mathrm{~m}$
Refer to RFMH, section 6, page 23 Rough Rules of Thumb

Insufficient
Without additional resources it can't be met.

Review

Safety Ask syndicate groups to identify safety issues and tasks...
(or as part of whole group debrief)
Discuss with students the process of arriving at these. e.g.

- Use of RFMH Sec 6
- Use of helicopter bucket productivity graph and bulldozer productivity information in Referral Notes

